Metallization on FDM Parts Using the Chemical Deposition Technique

نویسندگان

  • Azhar Equbal
  • Anoop kumar Sood
چکیده

Metallization of ABS (acrylonitrile-butadiene-styrene) parts has been studied on flat part surfaces. These parts are fabricated on an FDM (fused deposition modeling machine) using the layer-wise deposition principle using ABS as a part material. Electroless copper deposition on ABS parts was performed using two different surface preparation processes, namely ABS parts prepared using chromic acid for etching and ABS parts prepared using a solution mixture of sulphuric acid and hydrogen peroxide (H2SO4/H2O2) for etching. After surface preparations using these routes, copper (Cu) is deposited electrolessly using four different acidic baths. The acidic baths used are 5 wt% CuSO4 (copper sulfate) with 15 wt% of individual acids, namely HF (hydrofluoric acid), H2SO4 (sulphuric acid), H3PO4 (phosphoric acid) and CH3COOH (acetic acid). Cu deposition under different acidic baths used for both the routes is presented and compared based on their electrical performance, scanning electron microscopy (SEM) and energy dispersive X-ray spectrometry (EDS). The result shows that chromic acid etched samples show better electrical performance and Cu deposition in comparison to samples etched via H2SO4/H2O2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Composite Modeling and Analysis of FDM Prototypes for Design and Fabrication of Functionally Graded Parts

Fabrication of Functionally Graded Parts Longmei Li, Q. Sun, C. Bellehumeur , and P. Gu 2 Department of Mechanical and Manufacturing Engineering Department of Chemical and Petroleum Engineering The University of Calgary, Calgary, Alberta, T2N 1N4, CANADA Abstract Solid Freeform Fabrication technologies have potential to manufacture parts with locally controlled properties (LCP), which would all...

متن کامل

Methods to Improve Surface Finish of Parts Produced by Fused Deposition Modeling

Fused deposition modeling (FDM) is one of the rapid prototyping technologies that can use plastic material, which can be effectively used for making patterns for investment casting. The surface finish of the investment casting depends upon the surface finish of the pattern. But the surface finish of the parts produced by using FDM is not very good as compared to wax patterns, which are conventi...

متن کامل

Investigation of post-annealing effect on efficient ohmic contact to ZnO thin film using Ti/Al metallization strategy

Ohmic and Schottky contacts are playing a major role in the field of ZnO based electronics device fabrication. It is seen that several works have been reported on metallization scheme, contacts with this semiconducting material. But, the thickness of semiconducting material and the choosing of substrate still remain imperfect and inefficient for advanced IC technology. To estimate contact resis...

متن کامل

Study of Dynamic Mechanical Properties of Fused Deposition Modelling Processed Ultem Material

Fused Deposition Modelling (FDM), a renowned Rapid Prototyping (RP) process, has been successfully implemented in several industries to fabricate concept models and prototypes for rapid manufacturing. This study furnishes terse notes about the material damping properties of FDM made ULTEM samples considering the effect of FDM process parameters. Dynamic Mechanical Analysis (DMA) is carried out ...

متن کامل

Non-isotropic Material Distribution Topology Optimization for Fused Deposition Modeling Products

Mechanical properties of products produced with the Fused Deposition Modeling (FDM) process are known to be dependent on bead direction, especially when short fiber reinforcement is added to the polymer filament feedstock. As a result, the structural performance of fiber-filled FDM parts is expected to be improved by simultaneously computing preferred deposition directions while optimizing the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014